

• Planning

- Choosing the site
- Creating the configuration file
- Configuration, gains and LPF

• Layout on site

- Equipment and Tools
- Set up the layout
- Connecting GPS / Battery
- Calibrating the equipment
 - Receiver calibration QC
 - Sensor calibration QC
- On Site
 - Setting up a survey site
 - Electric Channels
 - Magnetic Channels
- Testing
 - Checklist
 - Test Recording
 - Software Recommendations
- Best practices

Choose the site

- 1. Choose the Site(s)
- 2. Configuration Layout E-lines orientation
 - True North
 - Magnetic North
 - Azimuth
- 3. Identify the magnetic declination
- 4. Define how your equipment will be allocated
- 5. Create the file configuration (config.json) SD Card

Avoid:

- Hikers
- Industrial or transport activity
- Power lines or electric fences
- Protect the equipment from wild animals, livestock, and even from vegetation (under windy conditions, can induce micro-vibrations that will add noise to the recording)

*Obtain permission to conduct the work on the site

2

Configuration Creator

Complete the information:

- 1. Select that the **Receiver** type
- 2. Select the Schedule
- 3. Channels Settings
- 4. Receiver Settings

- Define the Sampling Mode and Rate

5. Configuration Layout

🥪 Configurat	tion Creator - EMpower						<u></u>		Х
File Receiv	ver Schedule Timezone			2					
1 (Manual Automatic Start Single Shot Daily Weekly Add Schedule	Manual Ctrl+Alt+1 Automatic Start Ctrl+Alt+2 Single Shot Ctrl+Alt+3 Daily Ctrl+Alt+4 Weekly Ctrl+Alt+5 Add Schedule Ctrl+A			Electric channel settings Enabled Preamp / Attenuatu Gain Low Pass Filter	Channel E1			
					Positive Distance Negative Distance	50.00 m		P	
	50.00m 5	0.00m 50.00m 50.00m		5		50.00 m			
Т р	This section is arameters and	MTC-150 Gain: X4 UPF-17.8 kHz SN: 0 USED for inputting d instrument deta	MTC-150 Gain 28 ANZ Barries ANZ SN 0 HZ Putting the nt details that will		Sampling Mode Cor Sampling Rate 24ksps Configuration layout Layout Geometry C Survey Name Site Name Operator(s) Company Name Configuration Notes	Parallel Orthogonal Parallel The Notes is useful for documenting any additional			
b	e used for the	recording				information			

Configuration, gains and LPF

- In electric channels prefer pre-amplifier on, and only turn it off if the channel saturates (lowers noise)
- For electric channels, set main gain x1, and increase if your first recording is too noisy and only uses <50% the dynamic range
- With MTC-150, prefer gain x4. Other sensors start at gain x1
- When using MTC-150 ensure that sensor type reads MTC-150 to prevent over-voltage to the sensor
- Set the LPF as low as possible to allow only frequencies of interest, based on sensor
- MTC-150 records a little past 10KHz, either choose 10KHz of 17.8 Khz LPF (Why, when?)

Equipment and Tools

Equipment

- 1. Configuration Layout Sheet
- 2. Laptop
- **3.** EMpower + License
- 4. SD Card for each operation
 - Calibration Sensor
 - Calibration Receiver
 - Configuration File (Orthogonal, Parallel or White Noise)
- 5. Receiver
- 6. 12 V Battery
- 7. Power Cable and GPS Cable
- 8. Antenna
- 9. Magnetic Sensors and cables
- 10. Electrodes
- **11.** E-line cable

Tools & Supplies

- 1. Shovel
- 2. Container of salt water (50 g/L)
- 3. Handheld compass
- 4. Measuring tape
- 5. Multimeters (Analog and digital)

- 6. Pencil and permanent marker
- 7. Bubble Level
- 8. Wire cutters
- 9. Electrical tape / Flagging tape
- **10.** Tarp

Set up the layout

- 1. Ensure that you are at the right location as defined on the map
 - Use a handheld GPS compass
- 2. The site centre
 - Choose a dry spot
- 3. Stay clear of noise sources
- 4. For the ground electrode, choose the center spot less than 1 m from the receiver

*keep the receiver at least 1 m away from the E-Lines, to avoid electromagnetic interference

Connecting GPS / Battery

1. Battery

- Connect the battery,
 - Red (+) positive
 - Black (-) negative
- Fit the slotted connector (to the receiver's connector)

2. GPS

- Connect the cables on the GPS antenna and Receiver
- Open the antenna tripod, if necessary tape the antenna tripod to a stake, post or large tripod

Calibrating Equipment

- 1. Connect the sensors (Sensors should only be calibrated outdoors and away from noise)
- 2. Insert the SD Card on the receiver
 - $\circ \quad \ \ \text{Config file for Receiver}$
 - Config file for Sensor
- 3. Turn on the Receiver
- 4. Start the Calibration Recording
- **5.** Use the Manage module to view and quality control the calibration

*The calibration process should take place at the beginning of every survey (The sensors do not have to be buried to be calibrated)

Receiver calibration QC - MTU-5C / MTU-8A / RXU-8A

Receiver calibration QC - MTU-5D

Receiver calibration QC

Sensor calibration QC

Sensor calibration QC

Sensor calibration QC

Setting up a survey site

- Following the Configuration Layout, use a compass to orient the electrodes place to the north, south, east, and west to layout the E-lines
 - Use coloured adhesive tape to mark the length of half the desired dipole on precut E-line cables

colour-coded:

- Red for north Black for south
- Yellow for east Blue for west
- 2. Using the position of the electrodes orient the Sensors place following the Configuration Layout
 - Try to order by serial number where the minor number is for Hx

*The longer the dipole, the better signal-to-noise ratio but the greater the AC the voltage included by the local power grid

For any adjust on the E-lines or Sensors installation (See troubleshooting section)

Electric Channel

- 1. Register the electrode number and /or cable number on the Layout Sheet
- **2.** Dig a small hole about 20-50 cm deep removing any sizeable rocks
 - Loosen the dirt at the bottom of the hole
 Pour in at least 1 liter of salt water and mix it
 with the dirt to form a uniform mud
- **3.** Place the electrode upright in the hole Rotating it back and forth to position it solidly in the mud, Leave the electrode cable extended outside the hole (5)
- 4. Cover the electrode completely with the loose dirt
- 5. Connect E-lines to electrodes

Best practices

1. Excess cable:

Always lay excess cable in elongated
 S-shapes, no closer than 5m from the ends

2. Slope:

 E-lines laid out down a steep slope can also create a problem: the measured distance between the electrodes no longer equals the actual horizontal length of the dipole. Instead, the measured distance is a vector resulting from both horizontal and vertical displacement

*If you encounter inclines of 20°, you must compensate using trigonometry

- One way is to calculate how much to lengthen the E-lines when laying out the site so that the horizontal component of the vector is the desired dipole length
- Alternatively, you can make no compensation in the field, and instead calculate the actual horizontal dipole length before processing the data

To minimize wind-induced noise, ensure that the sensors cables lie flat on the ground. Place weights on them every meter or so if necessary

Magnetic Sensors

Alignment of the sensors

- 1. Horizontal (Hx, Hy)
 - The free end of **Hx** points North (connector points south)
 - The free end of Hy points East (connector points west)
 - \circ 40 cm deep x 15 cm from each end
 - \circ 10-15 cm from each side

2. Vertical (Hz)

• Dig a narrow hole deep enough to completely bury the sensor

*The Sensors should be 10 meters away from the receiver and 3 meters between each sensor

3. Register on the layout the serial numbers of the coils (Sensors) before burying them

Working with six sensors:

Ensure to put H1 to H3 sensors well separated in one quadrant, and H4 to H6 sensors well separated in the opposite quadrant.

Checklist

- Battery
- GPS antenna
- Inserting the SD card
- GPS synchronization
- Measure and orient electrode and sensor
- Keep cables flat on the ground, (not draped over plants or obstacles). Bury or weight the cables if necessary to reduce wind noise
- Ensure clear sight-lines between the GPS antenna and the sky
- Test Recording (see next page)

Keep accurate records on a layout sheet.

Test Recording

- 1. Insert the SD Card
- Turn on the receiver 2.
- 3. Recording data test (no longer than 10 minutes)
- Stop the recording 4.
- Turn off the receiver 5
- 6. Open Empower
- 7. Click the Evaluate button
- Select View data 8.
 - Select the SD card (The recording 0 process creates two folders, log and recdata)
 - Open recdata folder and select the 0 recording file and click Choose
 - Review the information recording 0

*Verify that there was not a warning icon on the left of the channels or next to the Recording ID

EMpower

Prepare

Fvaluate

Manage

Exit

6

Software Recommendations

- Use evaluate for ultra-fast quality control in the field (no need to transfer data, response in seconds)
- Do not copy data to your computer, instead create a project where you want the data, and import it from the card
- Use parallel tasks
 - Import data in parallel
 - Process several sites in parallel
- When editing, prefer starting with robust and only clear details manually after

Best Practices

- Do not push screen button when instrument is detecting sensors (top LED flash blue, bottom solid blue)
- Check for caps touching electrodes, they can introduce wide-band noise
- Electric binding post order is different from MTU-5A
- GPS antenna stores nicely in the pocket!
- Alway close the SD door (keep sand and water away)
- Use bag flap as sun shade and water protection

